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Summary. Different orders in (~2 of the hydrogenic energy levels are discussed. The 
spurious contribution of - 0.2Z 5~3 of the first order Douglas Kroll-Hess (DKH) 
Hamiltonian is cancelled at the second order DKH level, which recovers the energy 
up to the order of Z6~ 4 at least to a large extent and includes also a significant part 
of the higher order terms. Concerning the valence shell energies of many electron 
atoms, their behavior is more similar to the one of the hydrogen-like ls than of the 
respective nlj levels. The convergence of the c~ 2 expansion becomes unsatisfactory 
for the very heavy elements. 
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1 Introduction 

Instead of solving the relativistic wave equation directly, one may choose a per- 
turbation approach, which may computationally be more efficient [1]. Besides 
the Pauli-Foldy Wouthuysen expansion (PFW) [-2] several other perturbation 
methods have been developed in recent years such as the Direct Relativistic 
Perturbation Theory (DPT) [3,4], the Regular Approximation (RA) [51, the 
Douglas-Kroll-Hess transformation (DKH) [6], etc. While the different orders of 
the PFW and DPT approaches correspond to different powers of c~ 2 in the energy 
expression (~: Sommerfeld's fine structure constant), the other approaches are 
equivalent to partial summations of the c~2-expansion. 

For hydrogen-like one-electron systems with point nucleus of charge Z, the 
energy expression is known explicitly I-7]. It is then possible to derive explicit 
expressions for the different orders in ~2 of the energy in the PFW or DPT 
approach, as well as in the RA approaches (zeroth order ZORA, first order FORA, 
etc.) [-5, 81. Concerning the DKH approach, it is probably impossible to derive 
explicit c~-expansions (except for the zeroth order DKH energy). Therefore, the first 
aim of this note is to numerically investigate the e"-expansion of the lower order 
DKH approximations for the energy of hydrogen-like ions. 

As is well known, the relativistic corrections of the orbital energies of neutral, 
many-electron atoms differ drastically from those of the hydrogen-like ones [9]. 
Many-electron systems can only be treated by numerical methods. The magnitudes 
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of different orders of the relativistic contribution to valence shell energies must 
therefore be estimated on the basis of numerical power expansions. This is the 
second aim of this note. 

2 Hydrogen- l ike  sys tems 

2.1 Dirac energies 

The standard energy expression of hydrogen-like ions reads [7] 

E,k = [{1 + "y2/(n + ~ / ~  -- 7 2 -- k) 2} -1/2 _ 1]/a2, (1) 

where n is the principal quantum number, k = j + 1/2, j = l + 1/2, and 7 = Ze. 
Expanding Eq. (1) in a power series of 7 yields for the fractional relativistic energy 
correction 

gnk = (Enk Ig . . . . .  1"~/g;, . . . . .  1 72 .72 (1 + a6" 72 (1 -~- ... ))) - -  ~ n k  I / ~ " n k  ---- a ( 7  ) • = a 2 • 7 2 (1 + a 4 

(2) 
with 

a 2 = (n  - -  0.75 k ) / k n  2, 

a4 = (n 3 + 3kn 2 - 6k2n + 2.5k3)/(4n - 3k)kZn 2, 

a6 = [-Sn4(n + 3k) + 8k2n 2 (n - 15k) + 5k*(24n - 7k)]/8 

x [-2n2 (n + 3k) + k2(5k - 12n)] k2n 2, 

as = 5[n6(n + 3k) + k2n4(2.4n - 8k) + 2k4n2(21k  - 9n) 

+ 7k6 (0.gn - 4k)] / [8n4(n  + 3k) + 8k2n2(n - 15k) 

+ 5k 4 (24n - 7k)] k 2 n 2, (3) 

etc. which converge for n ~ oo to a2 = 0, a4 = 0.25/k 2, a6 = 0.5/k  2, as = 0.625/k 2. 
(Of course, the first relations of Eq. (3) can be found at many places in the literature, 
e.g. [-10]). a27 z is the percentage contribution of the first order correction to the 
nonrelativistic energy, a472 is the percentage contribution of the second order 
correction to the first order relativistic energy term, and so on. 

Typical values of 72 are 0.03 for Cr, 0.09 for Mo, 0.17-0.27 for the lanthanides 
and 0.42-0.56 for the actinides. For  the ls level, n = k - - 1 ,  of hydrogen-like 
systems one obtains a2 = 0.25, a4 = 0.5, a6 = 0.625, . -- .  We note that the order of 
magnitude of the fractional relativistic effects in the valence shells of many-electron 
atoms and molecules is comparable to the one in the K shell of one-electron atoms. 
Therefore, as a rough rule of thumb, to obtain the energy with an accuracy of about  
1%, the first order (i.e. a2) is needed from the transition metals onwards; the second 
order (a4) is needed from the lanthanides onwards; and the third order (a6) should 
be included for the actinides (compare a similar discussion in [10]). 

Numerical values for the ai-coefficients are presented in Table 1. For  given 
angular momentum (k, j or l) the ai grow at first for increasing n, but then converge 
towards smaller values, a2 even converges to zero, i.e. the relativistic correction 
vanishes for high quantum numbers. For  increasing order i, the a~ increase. The 
second and third order energies, i.e. up to c~ 4 and c~ 6, respectively (DPT2 and 
DPT3), are compared with the Dirac energies in Fig. 1. It  shows that, if higher 
order terms are needed, then one must cope with slow convergence, and methods 
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Table 1. Coefficients a~ (up to 4 digits) of the fractional relativistic energy 
corrections [see Eq. (2)] for hydrogen-like systems 
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k ( f j )  n a2 a4 a6 as 

1 (s½) 1 0.25 0.5 0.625 0.7 
1 (sp½) 2 0.3125 0.525 0.6384 0.7083 

3 0.25 0.4753 0.6041 0.6840 
4 0.2031 0.4351 0.5772 0.6659 
5 0.17 0.4059 0.5589 0.6543 
6 0.1458 0.3843 0.5463 0.6468 

co 0.0 0.25 0.5 0.625 

2(p~2) 2 0.0625 0.125 0.1562 0.175 
2(pd2 a) 3 0.0833 0.1343 0.1614 0.1783 

4 0.0781 0.1312 0.1596 0.1771 
5 0.07 0.125 0.1553 0.1740 
6 0.0625 0.1188 0.1510 0.1710 

co 0.0 0.0625 0.125 0.1562 

3 (d~) 3 0.0278 0.0556 0.0694 0.0778 
3(d/~ ) 4 0.0365 0.0590 0.0712 0.0789 

5 0.0367 0.0596 0.0717 0.0793 
6 0.0347 0.0583 0.0709 0.0787 

co 0.0 0.0278 0.0556 0.0694 

4(f~) 4 0.0156 0.0312 0.0391 0.0438 
4 (J~/~) 5 0.02 0.0328 0.0398 0.0442 

co 0.0 0.0156 0.0312 0.0391 

E/Z2 I 
05 '  

-o~ ~DPT2 
o . , .  

"\,~:'DPT3 ",lDk2 
-0,9 

-1 Dirac  
-1A 

0 o:~ o:~ o; o:s i ~y 

Fig. 1. E / Z  z versus 7 = Ze  for 
hydrogen-like ions. - -  Dirac, - - -  
first order DKH,  - . . . .  second order 
DKH,  - . . . . . . . .  second order DPT,  
. . . .  third order D P T  (note that the 
latter orders here refer to 72, while 
some authors count orders of 7, i.e. 
what is denoted here by DPT3 is 
sometimes called DPT6) 



216 K. Molzberger, W. H. E. Schwarz 

which partially sum up the y"-series of the DPT  approach may be preferable, such 
as the regular approximation or the Douglas-Kroll-Hess approach. 

Concerning the regular approximation, we note that the zeroth order (called 
ZORA or CPD0) [5, 8] yields the following y-expansion coefficients for hydrogen- 
like systems: 

a z°Ra = a2 + 1/4n 2, 

(a2a,) z°RA = a2 (a4 + 1/2n 2) + 1/16n 4, 

etc. which differ appreciably from the exact Dirac values ai of Eq. (3), especially for 
small quantum numbers. In the case of the "scaled ZORA" [8b, 24], however, 
which corresponds to the exact summation of all higher order terms in  a purely 
Coulombic field, the exact Dirac expansion coefficients are of course recovered, 
a ~  c a l e d Z O R A  ~ ~ i "  

2.2 D K H  energies 

The idea of the D K H  (and the RA) approach [6, 8] is to take special care of the 
strongly relativistic behavior of the electrons near the Coulomb singularity of the 
nucleus. The one-electron Hamiltonian may be written in the form 

H DKH = (~ /mZc  4 + p2c2 - me 2 + V )  + A(1)V + A(2)V + -.- . (4) 

The zeroth order term H DK° (the terms in parentheses) consists of the classical 
relativistic kinetic energy expression and the unmodified nuclear potential. The 
lowest order correction term is obtained by applying the iterative Douglas-Kroll  
transformation once [11]: 

A(1)V = ( A V A  - V )  + B~VyzB 

with 

and 

A = { [ 1  + (1 + g~2)-1/2]/2}1/2 ~ 1 - g02/8 + 118o4/128 . . . .  , 

B = {[1 + (1 + go2) 1/2 + fo212} -I/2 ~ 1/2 -- 3ga2/16 . . . .  , 

go = p /mc ,  rc = ~ .  

AV (1) represents the Darwin correction to the electron-nuclear attraction and 
the spin-orbital coupling, though not in the non-variational, singular Pauli-  
Foldy-Wouthuysen form but in a screened form which is variationally stable. This 
approximation had been suggested by Hess and by Alml6f in 1985 [11, 12]. 

We have numerically diagonalized the zeroth, first and second order D K H  
Hamiltonians in extended Gaussian basis sets, for all Z-values from 1 to 130 
(Fig. 1) thereby extending the numerical accuracy of Hess and Buenker [6, 11, 23]. 
The numerical ls eigenvalues were then fitted to a polynomial in Z and ~, using the 
technique described in Ref. [12]. For  the zeroth order, i.e. the so-called square root 
equation, we obtain Sucher's result [22], 

EDK0 0.5Z 2 (1 + 1.25072 (1 1.3471 (1 .-. ))), (5a) 1 8  ~ - -  

for the first-order Douglas-Kroll-Hess equation 

EDK1 0.5Z 2 (1 + 0.250y 2 (1 + 1.671 (1 • ))), (5b) 
l s  = - -  " "  
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for the second-order one 

EDK2 = __ 0.5Z 2 (1 + 0.25072 (1 + 0.4572 (1"'"))), (5c) l s  

while the Dirac equation yields 

E ls = - 0.5Z z (1 + 0.25072 (1 + 0.5072 (1 + 0.6257 z -.-))), (5d) 

and ZORA 

Ezo,a  = _ 0.5Z 2 (1 + 0.50072 (1 + 0.62572 (1 ..- ))). (5e) l s  

More expansion terms and more significant figures could not be obtained by 
the numerical fitting. The last digits in Eqs. (5a-c) are not exact. The problem is 
that at low values of ?,, the higher order terms become negligibly small, while at 
high 7-values the convergence of the power expansions is too slow. 

The singularity of the Coulomb potential introduces problems if combined with 
the classical relativistic kinetic energy expression, as at the DK0 level [14, 22,1. The 
lowest order relativistic correction coefficient is 1.2572 [Eq. (5a)], as to be expected 
for a spinless particle [7b], instead of 0.2572 for the hydrogenic electron [Eq. (5d),1. 
The next term in Eq. (5a) is of odd order in 7, while the correct energy expression 
(5d) contains only even powers of 7. The numerical value of - 1.34 agrees well with 
Sucher's analytical one, - 64/15rc = - 1.36 ([22-1, compare the discussion in [14]). 

The first order D K H  Hamiltonian recovers the lowest order relativistic correc- 
tion of 0.2572 exactly. Also the odd-order term is improved, though the first order 
D K H  correction overshoots: the energy contribution of + 0.84ZSc~ 3 =  0.5Z 2" 
1.2572. 1.347 according to Eq. (5a) is reduced to - 0.2Z5c~ 3 according to Eq. (5b). 
The survival of a term of odd order is clearly demonstrated in Fig. 2a. There, 
(E oK1 - E ) /73E  behaves approximately as a - b'7. Because of the 73 term, E T M  is 
too low for medium Z-values (see Fig. 1). 

The second order Douglas-Kroll-Hess operator cures the spurious ?3-term 
and recovers the 74-term, viz. to about 90% within the numerical accuracy of the 
applied basis set expansion method. The stabilizing (i.e. negative) higher order 
energy contributions of the Dirac energy are not completely recovered by the DK2 
approach (see Fig. 2b). Anyhow Fig. 1 shows that the DK2 approach is a signifi- 
cant improvement over the second and even third order D P T  approach for high 7, 
i.e. high nuclear charges. Numerical calculations on the hydride of element 111 
(y = 0.81) by Hess et al. [15,1 indicate, indeed, that the DK2 approach is still 
sufficient. 

3 The 6sp-valenee shell of heavy many-electron atoms 

While the fractional relativistic energy correction of an electron in a Coulomb field 
roughly behaves as + n-  1 k-  ~ [see Eqs. (2) and (3)], it is known from the classical 
work of Desclaux [9] that the behavior is quite different for electrons in a screened 
Coulomb field, such as in many-electron atoms. Within one column of the periodic 
table the fractional relativistic correction for ns orbital energies in valence shells 
does not at all decrease as n-  1 (see Table 2), and for the average npl/2,a/z orbital 
energies it has even a negative sign (relativistic destabilization) except for 
the elements in the lower right corner of the periodic table (I and Bi to Rn). The 
d- and f-orbitals are relativistically destabilized, too, in many-electron atoms 
[9,16,17]. 
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Fig. 2. Fractional relativistic energy corrections of first 
and second order DKH approaches. (a) Top: 
A3 = ( E ~  1 - E~s)/73Els versus y = Z~. E ~  1 is the 
hydrogenic is-energy of the first order DKH 
Hamiltonian, Els is the Dirac energy. (b) Bottom: 
A 4  = (E1Ds K2 - -  Els)/'~aEls versus y = Z ,  

Table 2. Coefficients a of the fractional relativistic energy corrections of valence shell orbital energies 
[see Eq. (3)] of the neutral atoms in the periodic table from Dirac-Fock calculations I-8] 

Group 1 2 11 12 13 14 15 16 17 18 

2s 0.17 0.20 0.32 0.40 0.44 0.48 0.51 0.53 
3s 0.20 0.20 0.29 0.34 0.37 0.39 0.40 0.42 
4s 0.20 0.19 0.68 0.44 0.45 0.44 0.44 0.44 0.44 0.44 
5s 0.22 0.20 0.66 0.51 0.50 0.48 0.47 0.46 0.45 0.45 
6s 0.23 0.21 0.97 0.75 0.70 0.66 0.63 0.60 0.59 0.57 

2p a - 0.26 - 0.21 - 0.18 - 0.16 -- 0.15 -- 0.14 
3p" -0 .19  -0 .14  -0 .12  --0.09 --0.08 -0 .07  
4p a -0 .13  --0.08 --0.06 -0 .04  --0.03 --0.02 
5p" - 0.10 - 0.06 - 0.03 - 0.02 - 0.01 - 0.00 
6p a - 0.06 -- 0.02 0.01 0.02 0.04 0.05 

a Weighted average of pl/2 and p3/2. These values were completely misprinted in I-9] 

I t  is s o m e t i m e s  s t a t e d  t h a t  r e l a t iv i s t i c  c o r r e c t i o n s  in  t he  v a l e n c e  shel ls  a re  
c a u s e d  i n d i r e c t l y  d u e  to  o r t h o g o n a l i t y  of  t h e  " n o n r e l a t i v i s t i c "  v a l e n c e  o r b i t a l s  o n  
t h e  " r e l a t i v i s t i c "  i n n e r  c o r e  o r b i t a l s .  T h e  a b o v e - m e n t i o n e d  b e h a v i o r s  a re  a n  i n d i c a -  
t i o n  a g a i n s t  t h i s  o p i n i o n .  F u r t h e r m o r e ,  R o s e  et  al. [ 18 ]  h a v e  d e m o n s t r a t e d  t h a t  
v a l e n c e  o r b i t a l s  a r e  m o d i f i e d  d i r ec t l y  b y  r e l a t iv i s t i c  k i n e m a t i c s  of  t h e i r  i n n e r  tai ls ,  
a n d  b y  t h e  r e l a t i v i s t i c a l l y  e n h a n c e d  n u c l e a r  s h i e l d i n g  l e a d i n g  to  n o n - h y d r o g e n - l i k e  
r e l a t i v i s t i c  d e s t a b i l i z a t i o n .  I n  a d d i t i o n  i t  h a s  b e e n  s h o w n  t h a t  t h e  o r t h o g o n a l i t y  of  
t he  v a l e n c e  o r b i t a l s  o n  t h e  r e l a t i v i s t i c a l l y  c o n t r a c t e d  i n n e r  co re  shel ls  d o e s  n o t  
r e s u l t  in  t h e  n a i v e l y  a n t i c i p a t e d  v a l e n c e  o r b i t a l  c o n t r a c t i o n ,  b u t  in  a ( c o m p a r a t i v e l y  
smal l )  e x p a n s i o n  [19] .  
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In  c o n c l u s i o n ,  it  is a n o n t r i v i a l  q u e s t i o n  h o w  the  to ta l  va lence  shell energies  
of heavy  a t o m s  are  re la t iv is t ica l ly  modif ied ,  a n d  h o w  m u c h  the  different  o rders  
of 7" c o n t r i b u t e .  In  o rd e r  to answer  these ques t ions ,  n u m e r i c a l  D i r a c - F o c k  
ca lcu la t ions  were p e r f o r m e d  o n  n eu t r a l  a t o m s  a n d  posi t ive  ions  wi th  a P t  
core a n d  6s °, 6s 2, 6s26p21/2 or  6s 2 2 4 6pl/z6p3/2 valence  shells. T h e  nuc l ea r  charge  
(Z) was  va r i ed  f rom 80 to 90, the  veloci ty  of l ight  (c) f rom c~-1 = 100 to oe. 
(The total energies  of  ra re  gas a t o m s  were inves t iga ted  in  this  m a n n e r  by  
D a v i d s o n  et al. [-20].) Sla ter ' s  a p p r o x i m a t i o n  was used here for the  exchange  
terms.  Since r e l a t i v i t y / ex ch an g e -co r r e l a t i o n  cross- te rms are  in  genera l  n o t  
d o m i n a n t  effects, we m a y  expect  the  resul ts  still to be  s e m i q u a n t i t a t i v e l y  
correct .  

T h e  va lence  shell energies  are  def ined  as follows: 

C C c 
Eval. = Eeonfig. 1 - -  E c o n f i g . 2  , (6) 

for ins tance ,  config.1 = [Pt]sZp 2, config.2 = [ P t ] s  2, a n d  val, = p2. The  f rac t iona l  
re la t iv is t ic  ene rgy  co r rec t ions  are  t h e n  def ined  as in  Eq. (2): 

eval. = (E~,aL- E~a=L~)/E~a=L ~ = azY 2 (1 + a4~/2(1 + "'" )). (7) 

S o m e  n u m e r i c a l  resul ts  are  p r e sen t ed  in  T a b l e  3. The  order  of m a g n i t u d e  of a6, 
wh ich  c o u l d  n o t  be  d e t e r m i n e d  wi th  a n y  r e a s o n a b l e  accuracy,  ranges  f rom 0.2 to 1. 
F o r  two typica l  cases, the  6s 2 a n d  the  6p43/z shells, evaL/7 z is p lo t t ed  versus  ~2 = 1/c 2 
in  Fig. 3. 

T h e  f r ac t iona l  re la t iv is t ic  s t ab i l i za t ion  of the  6s z two-e lec t ron  shell is smal le r  
t h a n  the  one  of the  6s o n e - e l e c t r o n  orbi ta l ,  while  the  oppos i t e  ho lds  for the  6p2/2 
a n d  6p'~/2 shells in  c o m p a r i s o n  to the  6pl/2 a n d  6p3/2 orb i ta l s  (no te  the  difference 

Table 3. Coefficients a (for c = 137), and expansion terms a2 and a4 (last digit is question- 
able) of the fractional relativistic energy corrections of valence shell energies [Eqs. (6), (7)] 
and of orbital energies (a °rb) from Dirac-Slater calculations 

Shell Atom a a2 a4 a °rb 

6s 2 Hg ° 0.613 0.451 0.7 6s: 0.917 
Pb 2 + 0.380 0.291 0.65 0.405 
Rn 6 + 0279 0.217 0.5 0.280 
Th 1°+ 0.248 0.191 0.5 0.247 

6s z 6p~/z Pb ° 0364 0.274 0.7 
Rn 4 + 0.264 0.205 0.6 
Th 8+ 0.236 0.182 0.5 

6p2~/2 Pb ° 0.310 0.223 0.7 6pl/2:0.296 
Rn 4+ 0.241 0.186 0.6 0.239 
Th s + 0.221 0.170 0.5 0.220 

6s 26p 6 Rn o 0.166 0.127 0.6 
Th 4 + 0.140 0.109 0.5 

6p 6 Rn ° 0.069 0.051 0.6 
Th ~+ 0.076 0.061 0.5 

6p4/2 Rn ° -- 0.120 -- 0.099 0.5 6p3/2: -- 0.360 
Th 4 + -- 0.032 -- 0.020 1.0 -0.051 
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Fig. 3. 8val./~ 2 v e r s u s  104/c 2, where ~v,L is the 
fractional relativistic correction of the valence 
energy, see Eqs. (6), (7), at the Dirac-Fock-Slater 
level; 7 = Zo~ = Z/c.  (a) Top: 6s 2 shell of Hg °, 
Pb 2+, Rn 6+, Th 1°+, a2 is the lowest order 
relativistic correction coefficient, 64 and 
6~ indicate the second order relativistic term, 
and the higher orders, respectively (for Hg and 
c = 137). (b) Bottom: 6p'~/2 shell of Rn ° and 
Th4 + 

between the Di rac -Fock  orbital energies in Table 2, and the Dirac-Slater orbital 
energies in Table 3, which have different physical meanings). 

The proportionali ty coefficients a of the fractional relativistic effects along an 
isoelectronic series decrease for increasing nuclear charge. This means, the frac- 
tional relativistic effects are especially large for "soft" valence shells. 

Compar ing a2 with a we see that the lowest order contributes about  75% to the 
total relativistic energy of the valence shells for atoms with Z = 80-90. The second 
order a4-term contributes about  15-20%, and the higher orders 5-10%. This is 
sketched in Fig. 3a. 

4 Conclusions 

The relativistic effects in the valence shells result from the interplay of two effects 
[-17-19]. First there is the relativistic kinematics of the inner tails of the valence 
orbitals, the so-called direct relativistic effect. It  is much larger in the screened 
Coulomb field of many-electron atoms than in the hydrogen-like pure Coulomb 
field. Second, there is the electron repulsion due to the relativistically modified 
charge distribution, which is called the indirect relativistic effect (having nothing to 
do with orthogonality constraints) or the relativistic shell effect or the relativistic 
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nuclear screening. Since the two effects are different for different orbitals, and since 
the one- and two-electron terms contribute differently to one-electron orbital 
energies and to total valence-shell energies, one must be very careful when drawing 
conclusions about  the relativistic effects of a many-electron system on the basis of 
a one-electron (e.g. Hfickel type) MO model. 

The importance of the relativistic higher order contributions decreases with 
increasing principal and angular momentum quantum numbers in the hydrogenic 
case. This is not the case for the valence orbitals of real atoms. Their ai coefficients 
are, roughly speaking, of a similar order of magnitude as the hydrogenic ones for 
the ls state. For  many chemical purposes, the nonrelativistic approximation works 
up to Z ~ 25 (first transition metals), and the first order relativistic correction ~ 72 
up to Z ~ 75 (first post-lanthanides). For  slightly larger Z-values, however, also the 
second order relativistic correction ~ 74 becomes insufficient because the higher 
order contributions become comparable. Accordingly, in order to achieve high 
accuracy, the second order relativistic terms must be included for medium heavy 
atoms, but to achieve medium accuracy for very heavy atoms, methods are needed 
which also cover orders in y even higher than 76, at least partially. 

The Douglas-Kroll-Hess approach partially sums up the different relativistic 
orders. Concerning the so-called first order D K H  approach, it is still contaminated 
with spurious terms of order ~ ~,3. Indeed, the first-order D K H  approach has been 
applied rather seldom, e.g. in [11, 12, 21]. The 73-error is cured at the second order 
D K H  level. Numerical calculations for hydrogenlike is-levels show that the error 
of the latter approach remains very small up to Z ~ 120. 
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